Refine Your Search

Topic

Author

Search Results

Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Technical Paper

A Novel Kalman Filter Based Road Grade Estimation Method

2020-04-14
2020-01-0563
This paper presents a novel Kalman filter based road grade estimation method using measurements from an accelerometer, a gyroscope and a velocity sensor. The accelerometer measures the longitudinal proper acceleration of the vehicle, and the accelerometer measurement is almost drift free but it is heavily corrupted by the accelerometer noise. The gyroscope measures the pitch rate of the vehicle, and the gyroscope measurement is quite clean but it is substantially disturbed by the gyroscope bias. The velocity sensor measures the longitudinal velocity of the vehicle, and the velocity sensor measurement is also considerably corrupted by the measurement noise. The developed Kalman filter based estimation method uses the models of the sensors and their outputs, and fuses the sensor measurements to optimally estimate the road grade. The simulation results show that the developed method is very effective in producing an accurate road grade estimate.
Technical Paper

Design of Valve Body Integrated Direct Acting Controids

2020-04-14
2020-01-0965
The latest trend in transmission hydraulic controls development ise body integrated direct acting control solenoid, ted by multiple automotive OEMs. The advantages of integrated direct acting control solenoids are key enablers for OEMs to meet more and more stringent fuel economy requirement and competitive environment. In the meantime, there are unique challenges in both designing and manufacturing of such solenoids, due to the fact the solenoid armature can only push the spool valve with limited force and limited stroke. Through analytical methods, this paper explains design guidelines to overcome the challenges and quantifies the impact of design decision to critical functional objectives. Multiple valve design configurations, including both normally low and normally high functionality, are covered in the analysis. Unique manufacturing process concerns are also addressed.
Technical Paper

Equivalence Factor Calculation for Hybrid Vehicles

2020-04-14
2020-01-1196
Within a hybrid electric vehicle, given a power request initiated by pedal actuation, a portion of overall power may be generated by fuel within an internal combustion engine, and a portion of power may be taken from or stored within a battery via an e-machine. Generally speaking, power taken from a vehicle battery must eventually be recharged at a later time. Recharge energy typically comes ultimately from engine generated power (and hence from fuel), or from recovered braking energy. A hybrid electric vehicle control system attempts to identify when to use each type of power, i.e., battery or engine power, in order to minimize overall fuel consumption. In order to most efficiently utilize battery and fuel generated power, many HEV control strategies utilize a concept wherein battery power is converted to a scaled fueling rate.
Journal Article

Battery Entropic Heating Coefficient Testing and Use in Cell-Level Loss Modeling for Extreme Fast Charging

2020-04-14
2020-01-0862
To achieve an accurate estimate of losses in a battery it is necessary to consider the reversible entropic losses, which may constitute over 20% of the peak total loss. In this work, a procedure for experimentally determining the entropic heating coefficient of a lithium-ion battery cell is developed. The entropic heating coefficient is the rate of change of the cell’s open-circuit voltage (OCV) with respect to temperature; it is a function of state-of-charge (SOC) and temperature and is often expressed in mV/K. The reversible losses inside the cell are a function of the current, the temperature, and the entropic heating coefficient, which itself is dependent on the cell chemistry. The total cell losses are the sum of the reversible and irreversible losses, where the irreversible losses consist of ohmic losses in the electrodes, ion transport losses, and other irreversible chemical reactions.
Journal Article

Accelerated Sizing of a Power Split Electrified Powertrain

2020-04-14
2020-01-0843
Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin’s minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude.
Journal Article

Guidelines for SUV Bodywork Design Focused on Aerodynamic Drag Reduction Using the Generic AeroSUV Model

2020-04-14
2020-01-0478
SUV Aerodynamics has received increased attention as the stake this segments holds in the automotive market keeps growing year after year, as well as its direct impact on fuel economy. Understanding the key physics in order to accomplish both fuel efficient and aesthetic products is paramount, which indeed gave origin to a major initiative to foster collaborative aerodynamic research across academia and industry, the so-called DrivAer model. In addition to this sedan-based model, a new dedicated SUV generic model, called AeroSUV [1], has been introduced in 2019, also intended to provide a common framework for aerodynamic research for both experimental work and numerical simulation validation. The present paper provides an area of common ground for SUV bodywork design focused on aerodynamic drag reduction by investigating both Estate and Fast back configurations of the generic AeroSUV model.
Journal Article

Light Duty Truck Rear Axle Thermal Modeling

2020-04-14
2020-01-1388
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry towards more sophisticated vehicle thermal management systems to best utilize the waste heat and improve driveline efficiency. The final drive unit in light and heavy duty trucks usually consists of geared transmission and differential housed in a lubricated axle. The automotive rear axle is one of the major sources of power loss in the driveline due to gear friction, churning and bearing loss affecting vehicle fuel economy. These losses vary significantly with lubricant viscosity. Also the temperatures of the lubricant are critical to the overall axle performance in terms of power losses, fatigue life and wear. In this paper, a methodology for modeling thermal behavior of automotive rear axle with heat exchanger is presented. The proposed model can be used to predict the axle lubricant temperature rise.
Journal Article

Longitudinal Vehicle Dynamics Modeling for AWD/4WD Vehicles to Study Torque Split between Front and Rear Axles

2020-04-14
2020-01-1410
All-wheel Drive (AWD) is a mature technology and most automobile manufacturers offer this feature on their vehicles. Improved traction, enhanced vehicle stability, and better handling are some of the key characteristics of AWD vehicles which are achieved by distributing the appropriate level of torque to the front and rear axles. Accurately capturing the torque split between the two axles is essential for sizing of driveline components like gears, bearings, and shafts. Traditionally, the torque split is considered to be either 50-50%, or solely proportional to the static weight distribution between the two axles. Design decisions are made based on historical test data. In this paper a longitudinal vehicle dynamics model for AWD systems is proposed to understand the influence of various key factors such as dynamic weight transfer, compliance of driveline components, and changing tire radius on the torque split.
Journal Article

Rear Axle Heat Exchanger - Utilization of Engine Coolant for Reduced CO2 Emissions and Fuel Consumption

2020-04-14
2020-01-1411
This paper describes the design, development, and operation of a rear axle dual-shell heat exchanger on the RAM 1500 Light Duty truck. This system has been proven to increase fuel economy and reduce exhaust emissions, particularly CO2, on the EPA Cold City schedule. The energy conversion strategy was first explored using math modeling. A PUGH analysis associated with concept selection is included. To refine the hardware and develop a control strategy prior to testing, a portable flow cart was developed to assess system performance and to correlate the multi-node heat transfer model. Bench testing focused on the durability and functional aspects of integrating the dual-shell axle cover with the axle and coolant delivery system through a comprehensive design and validation plan. Vehicle testing included various fuel economy and emissions related driving schedules to quantify the benefits.
Journal Article

Co-Simulation Methodology for PHEV Thermal System Development

2020-04-14
2020-01-1392
Thermal development of automotive applications is a lot more complex than it used to be in the past. Specifically, for Plug-in Hybrid Electric Vehicles (PHEVs), all the sub-systems are so intertwined that it’s hard to analyze them as sub-systems only. A system level solution is needed for proper sizing of components. For early thermal development, a co-simulation method can ensure that we take into account the inter-dependency of all the thermal features in the car. As for example, a large PHEV battery may need to be passively cooled by refrigerant, which is also associated with the interior Heating, Ventilation, and Air Conditioning (HVAC) cooling system. For proper sizing of the condenser, chiller etc., one has to account for the battery cooling and cabin cooling as one system. There are also many thermal actuators on a PHEV, e.g. control valves, pulse-width-module (PWM) pumps, electric compressor, electric coolant heaters etc.
Journal Article

Assessing the Impact of Lubricant and Fuel Composition on LSPI and Emissions in a Turbocharged Gasoline Direct Injection Engine

2020-04-14
2020-01-0610
Downsized turbocharged gasoline direct injection (TGDI) engines with high specific power and torque can enable reduced fuel consumption in passenger vehicles while maintaining or even improving on the performance of larger naturally aspirated engines. However, high specific torque levels, especially at low speeds, can lead to abnormal combustion phenomena such as knock or Low-Speed Pre-Ignition (LSPI). LSPI, in particular, can limit further downsizing due to resulting and potentially damaging mega-knock events. Herein, we characterize the impacts of lubricant and fuel composition on LSPI frequency in a TGDI engine while specifically exploring the correlation between fuel composition, particulate emissions, and LSPI events. Our research shows that: (1) oil composition has a strong impact on LSPI frequency and that LSPI frequency can be reduced through a carefully focused approach to lubricant formulation.
Technical Paper

Numerical Modeling of Direct-Oil-Cooled Electric Motor for Effective Thermal Management

2020-04-14
2020-01-1387
Electric motor performance is primarily limited by the amount of heat that can be effectively dissipated. Recent developments in electric motor thermal management have been employing direct oil spray/splash based cooling for improved performance. Simulation of two phase (air and oil) flow and associated heat transfer for such applications has been computationally challenging, hence not fully explored in the literature. This paper describes a numerical study in which two phase flow and heat transfer within a direct-oil-cooled electric motor are analyzed using CFD software. A detailed temperature field of all the motor components under different operating conditions is generated using a conjugate heat transfer approach. Numerical results are compared with the temperature measurements at discrete locations in motor.
Journal Article

Axle Efficiency Comparison Method and Spin Loss Benefit of Front Axle Disconnect Systems

2020-04-14
2020-01-1412
There are a variety of test protocols associated with vehicle fuel economy and emissions testing. As a result, a number of test protocols currently exist to measure axle efficiency and spin loss. The intent of this technical paper is to describe a methodology that uses a singular axle efficiency and spin loss procedure. The data can then be used to predict the effects on vehicle FE and GHG for a specific class of vehicles via simulation. An accelerated break-in method using a comparable energy approach has been developed, and can be used to meet the break-in requirements of different vehicle emission test protocols. A “float to equilibrium” sump temperature approach has been used to produce instantaneous efficiency data, which can be used to more accurately predict vehicle FE and GHG, inclusive of Cold CO2. The “Float to Equilibrium” approach and “Fixed Sump Temperature” approach has been compared and discussed.
Journal Article

Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network

2020-04-14
2020-01-1181
Battery state-of-charge (SOC) is critical information for the vehicle energy management system and must be accurately estimated to ensure reliable and affordable electrified vehicles (xEV). However, due to the nonlinear temperature, health, and SOC dependent behaviour of Li-ion batteries, SOC estimation is still a significant automotive engineering challenge. Traditional approaches to this problem, such as electrochemical models, usually require precise parameters and knowledge from the battery composition as well as its physical response. In contrast, neural networks are a data-driven approach that requires minimal knowledge of the battery or its nonlinear behaviour. The objective of this work is to present the design process of an SOC estimator using a deep feedforward neural network (FNN) approach. The method includes a description of data acquisition, data preparation, development of an FNN, FNN tuning, and robust validation of the FNN to sensor noise.
Technical Paper

New Method for Decoupling the Powertrain Roll Mode to Improve Idle Vibration

2019-06-05
2019-01-1588
Modern engines have high torque outputs and have low RPM due to increased demand for fuel efficiency. Vibrations caused by such engines have to be mitigated. Decoupling the roll mode from the remaining five rigid body modes results in a response which is predominantly about the torque roll axis (TRA) and helps reduce vibrations. Therefore, placing the mounts on the TRA early in the design phase is crucial. Best NVH performance can be obtained by optimizing the powertrain mount parameters viz; Position, Orientation and Stiffness. Many times, packaging restricts the mounts to be placed about the TRA resulting in degradation in NVH performance. Assuming that the line through the engine mount (Body side) centers is the desired TRA, we propose a novel method of shifting the TRA by adding mass modifying the powertrain inertia such that the new TRA is parallel to and on top to the desired TRA. This in turn will decouple the roll mode and reduce vibrations.
Technical Paper

Use of Active Vibration Control to Improve Vehicle Refinement while Expanding the Usable Range of Cylinder Deactivation

2019-06-05
2019-01-1571
Cylinder deactivation has been in use for several years resulting in a sizable fuel economy advantage for V8-powered vehicles. The size of the fuel-economy benefit, compared to the full potential possible, is often limited due to the amount of usable torque available in four-cylinder-mode being capped by Noise, Vibration, and Harshness (NVH) sensitivities of various rear-wheel-drive vehicle architectures. This paper describes the application and optimization of active vibration absorbers as a system to attenuate vibration through several paths from the powertrain-driveline into the car body. The use of this strategy for attenuating vibration at strategic points is shown to diminish the need for reducing the powertrain source amplitude. This paper describes the process by which the strategic application of these devices is developed in order to achieve the increased usage of the most fuel efficient reduced-cylinder-count engine-operating-points.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
X